MAYBE 97.177 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could not be shown:



HASKELL
  ↳ IFR

mainModule Main
  ((product :: [Ratio Int ->  Ratio Int) :: [Ratio Int ->  Ratio Int)

module Main where
  import qualified Prelude



If Reductions:
The following If expression
if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero

is transformed to
primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y))
primDivNatS0 x y False = Zero

The following If expression
if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x

is transformed to
primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y)
primModNatS0 x y False = Succ x



↳ HASKELL
  ↳ IFR
HASKELL
      ↳ BR

mainModule Main
  ((product :: [Ratio Int ->  Ratio Int) :: [Ratio Int ->  Ratio Int)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Main
  ((product :: [Ratio Int ->  Ratio Int) :: [Ratio Int ->  Ratio Int)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
gcd' x 0 = x
gcd' x y = gcd' y (x `rem` y)

is transformed to
gcd' x xz = gcd'2 x xz
gcd' x y = gcd'0 x y

gcd'0 x y = gcd' y (x `rem` y)

gcd'1 True x xz = x
gcd'1 yu yv yw = gcd'0 yv yw

gcd'2 x xz = gcd'1 (xz == 0) x xz
gcd'2 yx yy = gcd'0 yx yy

The following Function with conditions
gcd 0 0 = error []
gcd x y = 
gcd' (abs x) (abs y)
where 
gcd' x 0 = x
gcd' x y = gcd' y (x `rem` y)

is transformed to
gcd yz zu = gcd3 yz zu
gcd x y = gcd0 x y

gcd0 x y = 
gcd' (abs x) (abs y)
where 
gcd' x xz = gcd'2 x xz
gcd' x y = gcd'0 x y
gcd'0 x y = gcd' y (x `rem` y)
gcd'1 True x xz = x
gcd'1 yu yv yw = gcd'0 yv yw
gcd'2 x xz = gcd'1 (xz == 0) x xz
gcd'2 yx yy = gcd'0 yx yy

gcd1 True yz zu = error []
gcd1 zv zw zx = gcd0 zw zx

gcd2 True yz zu = gcd1 (zu == 0) yz zu
gcd2 zy zz vuu = gcd0 zz vuu

gcd3 yz zu = gcd2 (yz == 0) yz zu
gcd3 vuv vuw = gcd0 vuv vuw

The following Function with conditions
absReal x
 | x >= 0
 = x
 | otherwise
 = `negate` x

is transformed to
absReal x = absReal2 x

absReal1 x True = x
absReal1 x False = absReal0 x otherwise

absReal0 x True = `negate` x

absReal2 x = absReal1 x (x >= 0)

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False

The following Function with conditions
reduce x y
 | y == 0
 = error []
 | otherwise
 = x `quot` d :% (y `quot` d)
where 
d  = gcd x y

is transformed to
reduce x y = reduce2 x y

reduce2 x y = 
reduce1 x y (y == 0)
where 
d  = gcd x y
reduce0 x y True = x `quot` d :% (y `quot` d)
reduce1 x y True = error []
reduce1 x y False = reduce0 x y otherwise



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ LetRed

mainModule Main
  ((product :: [Ratio Int ->  Ratio Int) :: [Ratio Int ->  Ratio Int)

module Main where
  import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
reduce1 x y (y == 0)
where 
d  = gcd x y
reduce0 x y True = x `quot` d :% (y `quot` d)
reduce1 x y True = error []
reduce1 x y False = reduce0 x y otherwise

are unpacked to the following functions on top level
reduce2Reduce0 vux vuy x y True = x `quot` reduce2D vux vuy :% (y `quot` reduce2D vux vuy)

reduce2D vux vuy = gcd vux vuy

reduce2Reduce1 vux vuy x y True = error []
reduce2Reduce1 vux vuy x y False = reduce2Reduce0 vux vuy x y otherwise

The bindings of the following Let/Where expression
gcd' (abs x) (abs y)
where 
gcd' x xz = gcd'2 x xz
gcd' x y = gcd'0 x y
gcd'0 x y = gcd' y (x `rem` y)
gcd'1 True x xz = x
gcd'1 yu yv yw = gcd'0 yv yw
gcd'2 x xz = gcd'1 (xz == 0) x xz
gcd'2 yx yy = gcd'0 yx yy

are unpacked to the following functions on top level
gcd0Gcd'2 x xz = gcd0Gcd'1 (xz == 0) x xz
gcd0Gcd'2 yx yy = gcd0Gcd'0 yx yy

gcd0Gcd' x xz = gcd0Gcd'2 x xz
gcd0Gcd' x y = gcd0Gcd'0 x y

gcd0Gcd'1 True x xz = x
gcd0Gcd'1 yu yv yw = gcd0Gcd'0 yv yw

gcd0Gcd'0 x y = gcd0Gcd' y (x `rem` y)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
HASKELL
                  ↳ NumRed

mainModule Main
  ((product :: [Ratio Int ->  Ratio Int) :: [Ratio Int ->  Ratio Int)

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
HASKELL
                      ↳ Narrow
                      ↳ Narrow

mainModule Main
  (product :: [Ratio Int ->  Ratio Int)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(vuz3700), Succ(vuz301000)) → new_primPlusNat(vuz3700, vuz301000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primMulNat(Succ(vuz4100), Succ(vuz30100)) → new_primMulNat(vuz4100, Succ(vuz30100))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primMinusNatS(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS(vuz1620, vuz1630)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS00(vuz187, vuz188) → new_primModNatS(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS0(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS(Succ(Zero), Zero) → new_primModNatS(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS(Succ(Succ(vuz170000)), Zero) → new_primModNatS(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS0(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS0(vuz187, vuz188, Zero, Zero) → new_primModNatS00(vuz187, vuz188)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
QDP
                                  ↳ UsableRulesProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS(Succ(Succ(vuz170000)), Zero) → new_primModNatS(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
QDP
                                      ↳ RuleRemovalProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS(Succ(Succ(vuz170000)), Zero) → new_primModNatS(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_primModNatS(Succ(Succ(vuz170000)), Zero) → new_primModNatS(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)

Strictly oriented rules of the TRS R:

new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 2 + 2·x1   
POL(Zero) = 0   
POL(new_primMinusNatS0(x1, x2)) = 1 + 2·x1 + x2   
POL(new_primModNatS(x1, x2)) = x1 + x2   



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ RuleRemovalProof
QDP
                                          ↳ PisEmptyProof
                                ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
QDP
                                  ↳ Rewriting
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS00(vuz187, vuz188) → new_primModNatS(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS0(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS0(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS0(vuz187, vuz188, Zero, Zero) → new_primModNatS00(vuz187, vuz188)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188)) at position [0] we obtained the following new rules:

new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS(new_primMinusNatS0(vuz187, vuz188), Succ(vuz188))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Rewriting
QDP
                                      ↳ Rewriting
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS00(vuz187, vuz188) → new_primModNatS(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS0(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS(new_primMinusNatS0(vuz187, vuz188), Succ(vuz188))
new_primModNatS0(vuz187, vuz188, Zero, Zero) → new_primModNatS00(vuz187, vuz188)
new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS0(vuz187, vuz188, vuz1890, vuz1900)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule new_primModNatS00(vuz187, vuz188) → new_primModNatS(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188)) at position [0] we obtained the following new rules:

new_primModNatS00(vuz187, vuz188) → new_primModNatS(new_primMinusNatS0(vuz187, vuz188), Succ(vuz188))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
QDP
                                          ↳ QDPOrderProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS00(vuz187, vuz188) → new_primModNatS(new_primMinusNatS0(vuz187, vuz188), Succ(vuz188))
new_primModNatS(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS0(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS(new_primMinusNatS0(vuz187, vuz188), Succ(vuz188))
new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS0(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS0(vuz187, vuz188, Zero, Zero) → new_primModNatS00(vuz187, vuz188)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_primModNatS(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS0(vuz170000, vuz169000, vuz170000, vuz169000)
The remaining pairs can at least be oriented weakly.

new_primModNatS00(vuz187, vuz188) → new_primModNatS(new_primMinusNatS0(vuz187, vuz188), Succ(vuz188))
new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS(new_primMinusNatS0(vuz187, vuz188), Succ(vuz188))
new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS0(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS0(vuz187, vuz188, Zero, Zero) → new_primModNatS00(vuz187, vuz188)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primMinusNatS0(x1, x2)) = x1   
POL(new_primModNatS(x1, x2)) = x1   
POL(new_primModNatS0(x1, x2, x3, x4)) = x1   
POL(new_primModNatS00(x1, x2)) = x1   

The following usable rules [17] were oriented:

new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ QDPOrderProof
QDP
                                              ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS00(vuz187, vuz188) → new_primModNatS(new_primMinusNatS0(vuz187, vuz188), Succ(vuz188))
new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS(new_primMinusNatS0(vuz187, vuz188), Succ(vuz188))
new_primModNatS0(vuz187, vuz188, Zero, Zero) → new_primModNatS00(vuz187, vuz188)
new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS0(vuz187, vuz188, vuz1890, vuz1900)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ QDPOrderProof
                                            ↳ QDP
                                              ↳ DependencyGraphProof
QDP
                                                  ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS0(vuz187, vuz188, vuz1890, vuz1900)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ QDPOrderProof
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ UsableRulesProof
QDP
                                                      ↳ QReductionProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS0(vuz187, vuz188, vuz1890, vuz1900)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ QDPOrderProof
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ UsableRulesProof
                                                    ↳ QDP
                                                      ↳ QReductionProof
QDP
                                                          ↳ QDPSizeChangeProof
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primModNatS0(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS0(vuz187, vuz188, vuz1890, vuz1900)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ Narrowing
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(vuz170, Neg(Succ(vuz16900))) → new_gcd0Gcd'(Neg(Succ(vuz16900)), new_primRemInt0(vuz170, vuz16900))
new_gcd0Gcd'(vuz170, Pos(Succ(vuz16900))) → new_gcd0Gcd'(Pos(Succ(vuz16900)), new_primRemInt(vuz170, vuz16900))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primRemInt0(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primRemInt(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primRemInt0(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primRemInt(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primRemInt0(Neg(x0), x1)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primRemInt0(Pos(x0), x1)
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_gcd0Gcd'(vuz170, Neg(Succ(vuz16900))) → new_gcd0Gcd'(Neg(Succ(vuz16900)), new_primRemInt0(vuz170, vuz16900)) at position [1] we obtained the following new rules:

new_gcd0Gcd'(Neg(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Neg(new_primModNatS1(x0, x1)))
new_gcd0Gcd'(Pos(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(x0, x1)))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
QDP
                                ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(vuz170, Pos(Succ(vuz16900))) → new_gcd0Gcd'(Pos(Succ(vuz16900)), new_primRemInt(vuz170, vuz16900))
new_gcd0Gcd'(Pos(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(x0, x1)))
new_gcd0Gcd'(Neg(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Neg(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primRemInt0(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primRemInt(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primRemInt0(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primRemInt(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primRemInt0(Neg(x0), x1)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primRemInt0(Pos(x0), x1)
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
QDP
                                      ↳ UsableRulesProof
                                    ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Neg(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Neg(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primRemInt0(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primRemInt(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primRemInt0(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primRemInt(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primRemInt0(Neg(x0), x1)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primRemInt0(Pos(x0), x1)
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
QDP
                                          ↳ QReductionProof
                                    ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Neg(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Neg(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primRemInt0(Neg(x0), x1)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primRemInt0(Pos(x0), x1)
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primRemInt0(Neg(x0), x1)
new_primRemInt0(Pos(x0), x1)
new_primRemInt(Neg(x0), x1)
new_primRemInt(Pos(x0), x1)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
QDP
                                              ↳ Instantiation
                                    ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Neg(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Neg(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_gcd0Gcd'(Neg(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Neg(new_primModNatS1(x0, x1))) we obtained the following new rules:

new_gcd0Gcd'(Neg(Succ(z1)), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Neg(new_primModNatS1(Succ(z1), x1)))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Instantiation
QDP
                                                  ↳ MNOCProof
                                    ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Neg(Succ(z1)), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Neg(new_primModNatS1(Succ(z1), x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Instantiation
                                                ↳ QDP
                                                  ↳ MNOCProof
QDP
                                    ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Neg(Succ(z1)), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Neg(new_primModNatS1(Succ(z1), x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

Q is empty.
We have to consider all (P,Q,R)-chains.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
QDP
                                      ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(vuz170, Pos(Succ(vuz16900))) → new_gcd0Gcd'(Pos(Succ(vuz16900)), new_primRemInt(vuz170, vuz16900))
new_gcd0Gcd'(Pos(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primRemInt0(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primRemInt(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primRemInt0(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primRemInt(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primRemInt0(Neg(x0), x1)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primRemInt0(Pos(x0), x1)
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
QDP
                                          ↳ QReductionProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(vuz170, Pos(Succ(vuz16900))) → new_gcd0Gcd'(Pos(Succ(vuz16900)), new_primRemInt(vuz170, vuz16900))
new_gcd0Gcd'(Pos(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primRemInt(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primRemInt(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primRemInt0(Neg(x0), x1)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primRemInt0(Pos(x0), x1)
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primRemInt0(Neg(x0), x1)
new_primRemInt0(Pos(x0), x1)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
QDP
                                              ↳ Narrowing
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(vuz170, Pos(Succ(vuz16900))) → new_gcd0Gcd'(Pos(Succ(vuz16900)), new_primRemInt(vuz170, vuz16900))
new_gcd0Gcd'(Pos(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primRemInt(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primRemInt(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_gcd0Gcd'(vuz170, Pos(Succ(vuz16900))) → new_gcd0Gcd'(Pos(Succ(vuz16900)), new_primRemInt(vuz170, vuz16900)) at position [1] we obtained the following new rules:

new_gcd0Gcd'(Pos(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Pos(new_primModNatS1(x0, x1)))
new_gcd0Gcd'(Neg(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Neg(new_primModNatS1(x0, x1)))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
QDP
                                                  ↳ DependencyGraphProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Pos(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Pos(new_primModNatS1(x0, x1)))
new_gcd0Gcd'(Neg(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Neg(new_primModNatS1(x0, x1)))
new_gcd0Gcd'(Pos(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primRemInt(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primRemInt(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ AND
QDP
                                                        ↳ UsableRulesProof
                                                      ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Pos(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Pos(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primRemInt(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primRemInt(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ AND
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
QDP
                                                            ↳ QReductionProof
                                                      ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Pos(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Pos(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primRemInt(Neg(x0), x1)
new_primRemInt(Pos(x0), x1)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ AND
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
QDP
                                                                ↳ Instantiation
                                                      ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Pos(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Pos(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_gcd0Gcd'(Pos(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Pos(new_primModNatS1(x0, x1))) we obtained the following new rules:

new_gcd0Gcd'(Pos(Succ(z1)), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Pos(new_primModNatS1(Succ(z1), x1)))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ AND
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Instantiation
QDP
                                                                    ↳ MNOCProof
                                                      ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Pos(Succ(z1)), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Pos(new_primModNatS1(Succ(z1), x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ AND
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ MNOCProof
QDP
                                                      ↳ QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Pos(Succ(z1)), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Pos(new_primModNatS1(Succ(z1), x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

Q is empty.
We have to consider all (P,Q,R)-chains.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ AND
                                                      ↳ QDP
QDP
                                                        ↳ UsableRulesProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Pos(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(x0, x1)))
new_gcd0Gcd'(Neg(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Neg(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primRemInt(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primRemInt(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ AND
                                                      ↳ QDP
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
QDP
                                                            ↳ QReductionProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Pos(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(x0, x1)))
new_gcd0Gcd'(Neg(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Neg(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primRemInt(Neg(x0), x1)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)
new_primRemInt(Pos(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primRemInt(Neg(x0), x1)
new_primRemInt(Pos(x0), x1)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ AND
                                                      ↳ QDP
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
QDP
                                                                ↳ Instantiation
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Neg(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Neg(new_primModNatS1(x0, x1)))
new_gcd0Gcd'(Pos(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(x0, x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_gcd0Gcd'(Pos(x0), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(x0, x1))) we obtained the following new rules:

new_gcd0Gcd'(Pos(Succ(z1)), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(Succ(z1), x1)))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ AND
                                                      ↳ QDP
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Instantiation
QDP
                                                                    ↳ Instantiation
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Neg(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Neg(new_primModNatS1(x0, x1)))
new_gcd0Gcd'(Pos(Succ(z1)), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(Succ(z1), x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_gcd0Gcd'(Neg(x0), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Neg(new_primModNatS1(x0, x1))) we obtained the following new rules:

new_gcd0Gcd'(Neg(Succ(z1)), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Neg(new_primModNatS1(Succ(z1), x1)))



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ AND
                                                      ↳ QDP
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ Instantiation
QDP
                                                                        ↳ MNOCProof
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Neg(Succ(z1)), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Neg(new_primModNatS1(Succ(z1), x1)))
new_gcd0Gcd'(Pos(Succ(z1)), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(Succ(z1), x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

The set Q consists of the following terms:

new_primModNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_primMinusNatS0(Succ(x0), Zero)
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_primModNatS1(Zero, x0)
new_primModNatS02(x0, x1, Zero, Zero)
new_primModNatS01(x0, x1)
new_primModNatS1(Succ(Zero), Zero)
new_primMinusNatS0(Zero, Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ Narrowing
                              ↳ QDP
                                ↳ DependencyGraphProof
                                  ↳ AND
                                    ↳ QDP
                                    ↳ QDP
                                      ↳ UsableRulesProof
                                        ↳ QDP
                                          ↳ QReductionProof
                                            ↳ QDP
                                              ↳ Narrowing
                                                ↳ QDP
                                                  ↳ DependencyGraphProof
                                                    ↳ AND
                                                      ↳ QDP
                                                      ↳ QDP
                                                        ↳ UsableRulesProof
                                                          ↳ QDP
                                                            ↳ QReductionProof
                                                              ↳ QDP
                                                                ↳ Instantiation
                                                                  ↳ QDP
                                                                    ↳ Instantiation
                                                                      ↳ QDP
                                                                        ↳ MNOCProof
QDP
                          ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_gcd0Gcd'(Pos(Succ(z1)), Neg(Succ(x1))) → new_gcd0Gcd'(Neg(Succ(x1)), Pos(new_primModNatS1(Succ(z1), x1)))
new_gcd0Gcd'(Neg(Succ(z1)), Pos(Succ(x1))) → new_gcd0Gcd'(Pos(Succ(x1)), Neg(new_primModNatS1(Succ(z1), x1)))

The TRS R consists of the following rules:

new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_primModNatS1(Zero, vuz16900) → Zero
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Zero) → Zero
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero

Q is empty.
We have to consider all (P,Q,R)-chains.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ DependencyGraphProof
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(vuz162, vuz163, Zero, Zero) → new_primDivNatS00(vuz162, vuz163)
new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Succ(vuz1650)) → new_primDivNatS0(vuz162, vuz163, vuz1640, vuz1650)
new_primDivNatS00(vuz162, vuz163) → new_primDivNatS(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163))
new_primDivNatS(Succ(Succ(vuz12200)), Succ(vuz123000)) → new_primDivNatS0(vuz12200, vuz123000, vuz12200, vuz123000)
new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Zero) → new_primDivNatS(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163))
new_primDivNatS(Succ(Zero), Zero) → new_primDivNatS(new_primMinusNatS2, Zero)
new_primDivNatS(Succ(Succ(vuz12200)), Zero) → new_primDivNatS(new_primMinusNatS1(vuz12200), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS1(vuz12200) → Succ(vuz12200)
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS2Zero

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS1(x0)
new_primMinusNatS2
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
QDP
                                  ↳ UsableRulesProof
                                ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(vuz12200)), Zero) → new_primDivNatS(new_primMinusNatS1(vuz12200), Zero)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS1(vuz12200) → Succ(vuz12200)
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS2Zero

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS1(x0)
new_primMinusNatS2
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
QDP
                                      ↳ QReductionProof
                                ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(vuz12200)), Zero) → new_primDivNatS(new_primMinusNatS1(vuz12200), Zero)

The TRS R consists of the following rules:

new_primMinusNatS1(vuz12200) → Succ(vuz12200)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS1(x0)
new_primMinusNatS2
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS2
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
QDP
                                          ↳ RuleRemovalProof
                                ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS(Succ(Succ(vuz12200)), Zero) → new_primDivNatS(new_primMinusNatS1(vuz12200), Zero)

The TRS R consists of the following rules:

new_primMinusNatS1(vuz12200) → Succ(vuz12200)

The set Q consists of the following terms:

new_primMinusNatS1(x0)

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_primDivNatS(Succ(Succ(vuz12200)), Zero) → new_primDivNatS(new_primMinusNatS1(vuz12200), Zero)

Strictly oriented rules of the TRS R:

new_primMinusNatS1(vuz12200) → Succ(vuz12200)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_primDivNatS(x1, x2)) = x1 + x2   
POL(new_primMinusNatS1(x1)) = 2 + 2·x1   



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ RuleRemovalProof
QDP
                                              ↳ PisEmptyProof
                                ↳ QDP
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:

new_primMinusNatS1(x0)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
QDP
                                  ↳ UsableRulesProof
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(vuz162, vuz163, Zero, Zero) → new_primDivNatS00(vuz162, vuz163)
new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Succ(vuz1650)) → new_primDivNatS0(vuz162, vuz163, vuz1640, vuz1650)
new_primDivNatS(Succ(Succ(vuz12200)), Succ(vuz123000)) → new_primDivNatS0(vuz12200, vuz123000, vuz12200, vuz123000)
new_primDivNatS00(vuz162, vuz163) → new_primDivNatS(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163))
new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Zero) → new_primDivNatS(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS1(vuz12200) → Succ(vuz12200)
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS2Zero

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS1(x0)
new_primMinusNatS2
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
QDP
                                      ↳ QReductionProof
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(vuz162, vuz163, Zero, Zero) → new_primDivNatS00(vuz162, vuz163)
new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Succ(vuz1650)) → new_primDivNatS0(vuz162, vuz163, vuz1640, vuz1650)
new_primDivNatS(Succ(Succ(vuz12200)), Succ(vuz123000)) → new_primDivNatS0(vuz12200, vuz123000, vuz12200, vuz123000)
new_primDivNatS00(vuz162, vuz163) → new_primDivNatS(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163))
new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Zero) → new_primDivNatS(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS1(x0)
new_primMinusNatS2
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS1(x0)
new_primMinusNatS2



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
QDP
                                          ↳ QDPOrderProof
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(vuz162, vuz163, Zero, Zero) → new_primDivNatS00(vuz162, vuz163)
new_primDivNatS00(vuz162, vuz163) → new_primDivNatS(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163))
new_primDivNatS(Succ(Succ(vuz12200)), Succ(vuz123000)) → new_primDivNatS0(vuz12200, vuz123000, vuz12200, vuz123000)
new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Succ(vuz1650)) → new_primDivNatS0(vuz162, vuz163, vuz1640, vuz1650)
new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Zero) → new_primDivNatS(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_primDivNatS0(vuz162, vuz163, Zero, Zero) → new_primDivNatS00(vuz162, vuz163)
new_primDivNatS(Succ(Succ(vuz12200)), Succ(vuz123000)) → new_primDivNatS0(vuz12200, vuz123000, vuz12200, vuz123000)
new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Zero) → new_primDivNatS(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163))
The remaining pairs can at least be oriented weakly.

new_primDivNatS00(vuz162, vuz163) → new_primDivNatS(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163))
new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Succ(vuz1650)) → new_primDivNatS0(vuz162, vuz163, vuz1640, vuz1650)
Used ordering: Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_primDivNatS(x1, x2)) = x1   
POL(new_primDivNatS0(x1, x2, x3, x4)) = 1 + x1   
POL(new_primDivNatS00(x1, x2)) = x1   
POL(new_primMinusNatS0(x1, x2)) = x1   

The following usable rules [17] were oriented:

new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ QDPOrderProof
QDP
                                              ↳ DependencyGraphProof
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Succ(vuz1650)) → new_primDivNatS0(vuz162, vuz163, vuz1640, vuz1650)
new_primDivNatS00(vuz162, vuz163) → new_primDivNatS(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163))

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ QDPOrderProof
                                            ↳ QDP
                                              ↳ DependencyGraphProof
QDP
                                                  ↳ UsableRulesProof
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Succ(vuz1650)) → new_primDivNatS0(vuz162, vuz163, vuz1640, vuz1650)

The TRS R consists of the following rules:

new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)

The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ QDPOrderProof
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ UsableRulesProof
QDP
                                                      ↳ QReductionProof
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Succ(vuz1650)) → new_primDivNatS0(vuz162, vuz163, vuz1640, vuz1650)

R is empty.
The set Q consists of the following terms:

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primMinusNatS0(Succ(x0), Succ(x1))
new_primMinusNatS0(Zero, Zero)
new_primMinusNatS0(Zero, Succ(x0))
new_primMinusNatS0(Succ(x0), Zero)



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ AND
                                ↳ QDP
                                ↳ QDP
                                  ↳ UsableRulesProof
                                    ↳ QDP
                                      ↳ QReductionProof
                                        ↳ QDP
                                          ↳ QDPOrderProof
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ UsableRulesProof
                                                    ↳ QDP
                                                      ↳ QReductionProof
QDP
                                                          ↳ QDPSizeChangeProof
                          ↳ QDP
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_primDivNatS0(vuz162, vuz163, Succ(vuz1640), Succ(vuz1650)) → new_primDivNatS0(vuz162, vuz163, vuz1640, vuz1650)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                        ↳ AND
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
                          ↳ QDP
QDP
                            ↳ QDPSizeChangeProof
                      ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_enforceWHNF0(vuz104, vuz90, vuz103, vuz89, :(vuz310, vuz311)) → new_seq(:%(vuz103, vuz89), vuz310, :%(vuz103, vuz89), vuz311)
new_enforceWHNF(vuz40, vuz300, vuz28, vuz27, Succ(vuz300), vuz26, vuz25, vuz29, vuz31) → new_enforceWHNF0(new_quot0(vuz40, vuz300, vuz28), new_quot(vuz27, vuz40, vuz300, vuz28), new_quot0(vuz40, vuz300, vuz28), new_quot(vuz27, vuz40, vuz300, vuz28), vuz31)
new_seq(:%(vuz40, Pos(vuz410)), :%(vuz300, Pos(vuz3010)), vuz5, vuz31) → new_enforceWHNF(vuz40, vuz300, new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), vuz31)
new_enforceWHNF1(vuz40, vuz300, vuz34, vuz33, Succ(vuz360), vuz32, vuz31, vuz35, vuz31) → new_enforceWHNF0(new_quot2(vuz40, vuz300, vuz34), new_quot1(vuz33, vuz40, vuz300, vuz34), new_quot2(vuz40, vuz300, vuz34), new_quot1(vuz33, vuz40, vuz300, vuz34), vuz31)
new_seq(:%(vuz40, Pos(vuz410)), :%(vuz300, Neg(vuz3010)), vuz5, vuz31) → new_enforceWHNF1(vuz40, vuz300, new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), vuz31)
new_seq(:%(vuz40, Neg(vuz410)), :%(vuz300, Pos(vuz3010)), vuz5, vuz31) → new_enforceWHNF1(vuz40, vuz300, new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), vuz31)
new_seq(:%(vuz40, Neg(vuz410)), :%(vuz300, Neg(vuz3010)), vuz5, vuz31) → new_enforceWHNF(vuz40, vuz300, new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), new_primMulNat0(vuz410, vuz3010), vuz31)

The TRS R consists of the following rules:

new_gcd0Gcd'0(vuz170, Pos(Succ(vuz16900))) → new_gcd0Gcd'0(Pos(Succ(vuz16900)), new_primRemInt(vuz170, vuz16900))
new_primDivNatS1(Succ(Zero), Zero) → Succ(new_primDivNatS1(new_primMinusNatS2, Zero))
new_primModNatS01(vuz187, vuz188) → new_primModNatS1(new_primMinusNatS0(Succ(vuz187), Succ(vuz188)), Succ(vuz188))
new_primModNatS1(Succ(Zero), Succ(vuz169000)) → Succ(Zero)
new_abs(Zero) → Neg(Zero)
new_quot(vuz27, vuz40, vuz300, vuz28) → new_primQuotInt(vuz27, new_gcd22(vuz40, vuz300, vuz28))
new_primModNatS02(vuz187, vuz188, Zero, Succ(vuz1900)) → Succ(Succ(vuz187))
new_primRemInt0(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_gcd22(Pos(vuz400), Pos(vuz3000), vuz28) → new_gcd23(new_primMulNat0(vuz400, vuz3000), vuz28)
new_quot2(Pos(vuz400), Pos(vuz3000), vuz34) → new_primQuotInt(new_primMulNat0(vuz400, vuz3000), new_reduce2D2(new_primMulNat0(vuz400, vuz3000), vuz34))
new_primQuotInt(vuz27, Neg(Zero)) → new_error
new_primPlusNat1(Succ(vuz3700), Succ(vuz301000)) → Succ(Succ(new_primPlusNat1(vuz3700, vuz301000)))
new_primQuotInt0(vuz122, Pos(Zero)) → new_error
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Zero) → new_primModNatS01(vuz187, vuz188)
new_primMulNat0(Zero, Succ(vuz30100)) → Zero
new_primMulNat0(Succ(vuz4100), Zero) → Zero
new_primMinusNatS0(Zero, Zero) → Zero
new_reduce2D1(vuz125, vuz34) → new_gcd21(vuz125, vuz34)
new_primPlusNat1(Zero, Zero) → Zero
new_primDivNatS02(vuz162, vuz163, Zero, Succ(vuz1650)) → Zero
new_primMinusNatS0(Zero, Succ(vuz1630)) → Zero
new_abs(Succ(vuz340)) → new_absReal1(vuz340)
new_quot2(Neg(vuz400), Pos(vuz3000), vuz34) → new_primQuotInt0(new_primMulNat0(vuz400, vuz3000), new_reduce2D1(new_primMulNat0(vuz400, vuz3000), vuz34))
new_quot2(Pos(vuz400), Neg(vuz3000), vuz34) → new_primQuotInt0(new_primMulNat0(vuz400, vuz3000), new_reduce2D1(new_primMulNat0(vuz400, vuz3000), vuz34))
new_gcd23(Succ(vuz1670), vuz28) → new_gcd0Gcd'0(new_abs0(Succ(vuz1670)), new_abs0(vuz28))
new_primDivNatS02(vuz162, vuz163, Succ(vuz1640), Zero) → new_primDivNatS01(vuz162, vuz163)
new_primDivNatS1(Succ(Succ(vuz12200)), Zero) → Succ(new_primDivNatS1(new_primMinusNatS1(vuz12200), Zero))
new_gcd21(Zero, Zero) → new_error
new_gcd20(Pos(vuz400), Neg(vuz3000), vuz34) → new_gcd21(new_primMulNat0(vuz400, vuz3000), vuz34)
new_gcd20(Neg(vuz400), Pos(vuz3000), vuz34) → new_gcd21(new_primMulNat0(vuz400, vuz3000), vuz34)
new_reduce2D2(vuz168, vuz34) → new_gcd2(vuz168, vuz168, vuz34)
new_gcd21(Succ(vuz1250), vuz34) → new_gcd0Gcd'0(new_abs(Succ(vuz1250)), new_abs(vuz34))
new_gcd23(Zero, Succ(vuz280)) → new_gcd0Gcd'0(new_abs0(Zero), new_abs0(Succ(vuz280)))
new_primMulNat0(Succ(vuz4100), Succ(vuz30100)) → new_primPlusNat0(new_primMulNat0(vuz4100, Succ(vuz30100)), vuz30100)
new_gcd22(Neg(vuz400), Neg(vuz3000), vuz28) → new_gcd23(new_primMulNat0(vuz400, vuz3000), vuz28)
new_gcd2(Succ(vuz1270), vuz126, vuz34) → new_gcd0(vuz126, vuz34)
new_gcd0(vuz126, vuz34) → new_gcd0Gcd'0(new_abs0(vuz126), new_abs(vuz34))
new_primDivNatS02(vuz162, vuz163, Succ(vuz1640), Succ(vuz1650)) → new_primDivNatS02(vuz162, vuz163, vuz1640, vuz1650)
new_gcd23(Zero, Zero) → new_error
new_gcd0Gcd'0(vuz170, Neg(Succ(vuz16900))) → new_gcd0Gcd'0(Neg(Succ(vuz16900)), new_primRemInt0(vuz170, vuz16900))
new_primQuotInt(vuz27, Pos(Succ(vuz16600))) → Pos(new_primDivNatS1(vuz27, vuz16600))
new_absReal1(vuz1240) → Pos(Succ(vuz1240))
new_primModNatS02(vuz187, vuz188, Zero, Zero) → new_primModNatS01(vuz187, vuz188)
new_primMinusNatS1(vuz12200) → Succ(vuz12200)
new_primDivNatS01(vuz162, vuz163) → Succ(new_primDivNatS1(new_primMinusNatS0(vuz162, vuz163), Succ(vuz163)))
new_quot0(Neg(vuz400), Pos(vuz3000), vuz28) → new_primQuotInt0(new_primMulNat0(vuz400, vuz3000), new_reduce2D0(new_primMulNat0(vuz400, vuz3000), vuz28))
new_quot0(Pos(vuz400), Neg(vuz3000), vuz28) → new_primQuotInt0(new_primMulNat0(vuz400, vuz3000), new_reduce2D0(new_primMulNat0(vuz400, vuz3000), vuz28))
new_primQuotInt(vuz27, Pos(Zero)) → new_error
new_primMinusNatS0(Succ(vuz1620), Zero) → Succ(vuz1620)
new_primDivNatS1(Zero, vuz12300) → Zero
new_primQuotInt0(vuz122, Neg(Zero)) → new_error
new_abs0(Zero) → Pos(Zero)
new_primMulNat0(Zero, Zero) → Zero
new_primRemInt0(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primPlusNat0(Succ(vuz370), vuz30100) → Succ(Succ(new_primPlusNat1(vuz370, vuz30100)))
new_errorerror([])
new_primModNatS1(Zero, vuz16900) → Zero
new_quot2(Neg(vuz400), Neg(vuz3000), vuz34) → new_primQuotInt(new_primMulNat0(vuz400, vuz3000), new_reduce2D2(new_primMulNat0(vuz400, vuz3000), vuz34))
new_quot0(Neg(vuz400), Neg(vuz3000), vuz28) → new_primQuotInt(new_primMulNat0(vuz400, vuz3000), new_reduce2D(new_primMulNat0(vuz400, vuz3000), vuz28))
new_reduce2D(vuz167, vuz28) → new_gcd23(vuz167, vuz28)
new_gcd20(Neg(vuz400), Neg(vuz3000), vuz34) → new_gcd2(new_primMulNat0(vuz400, vuz3000), new_primMulNat0(vuz400, vuz3000), vuz34)
new_gcd2(Zero, vuz126, Succ(vuz340)) → new_gcd0(vuz126, Succ(vuz340))
new_gcd22(Neg(vuz400), Pos(vuz3000), vuz28) → new_gcd24(new_primMulNat0(vuz400, vuz3000), vuz28)
new_gcd22(Pos(vuz400), Neg(vuz3000), vuz28) → new_gcd24(new_primMulNat0(vuz400, vuz3000), vuz28)
new_abs0(Succ(vuz280)) → Pos(Succ(vuz280))
new_gcd0Gcd'0(vuz170, Neg(Zero)) → vuz170
new_primPlusNat0(Zero, vuz30100) → Succ(vuz30100)
new_gcd21(Zero, Succ(vuz340)) → new_gcd0Gcd'0(new_abs(Zero), new_abs(Succ(vuz340)))
new_primQuotInt(vuz27, Neg(Succ(vuz16600))) → Neg(new_primDivNatS1(vuz27, vuz16600))
new_primModNatS02(vuz187, vuz188, Succ(vuz1890), Succ(vuz1900)) → new_primModNatS02(vuz187, vuz188, vuz1890, vuz1900)
new_reduce2D0(vuz124, vuz28) → new_gcd24(vuz124, vuz28)
new_primRemInt(Pos(vuz1700), vuz16900) → Pos(new_primModNatS1(vuz1700, vuz16900))
new_primDivNatS1(Succ(Succ(vuz12200)), Succ(vuz123000)) → new_primDivNatS02(vuz12200, vuz123000, vuz12200, vuz123000)
new_primModNatS1(Succ(Zero), Zero) → new_primModNatS1(new_primMinusNatS0(Zero, Zero), Zero)
new_quot1(vuz33, vuz40, vuz300, vuz34) → new_primQuotInt0(vuz33, new_gcd20(vuz40, vuz300, vuz34))
new_primDivNatS02(vuz162, vuz163, Zero, Zero) → new_primDivNatS01(vuz162, vuz163)
new_primRemInt(Neg(vuz1700), vuz16900) → Neg(new_primModNatS1(vuz1700, vuz16900))
new_primPlusNat1(Zero, Succ(vuz301000)) → Succ(vuz301000)
new_primPlusNat1(Succ(vuz3700), Zero) → Succ(vuz3700)
new_gcd24(Zero, Zero) → new_error
new_gcd20(Pos(vuz400), Pos(vuz3000), vuz34) → new_gcd2(new_primMulNat0(vuz400, vuz3000), new_primMulNat0(vuz400, vuz3000), vuz34)
new_primMinusNatS2Zero
new_primModNatS1(Succ(Succ(vuz170000)), Succ(vuz169000)) → new_primModNatS02(vuz170000, vuz169000, vuz170000, vuz169000)
new_primQuotInt0(vuz122, Pos(Succ(vuz12300))) → Neg(new_primDivNatS1(vuz122, vuz12300))
new_quot0(Pos(vuz400), Pos(vuz3000), vuz28) → new_primQuotInt(new_primMulNat0(vuz400, vuz3000), new_reduce2D(new_primMulNat0(vuz400, vuz3000), vuz28))
new_gcd24(Succ(vuz1240), vuz28) → new_gcd0Gcd'0(new_absReal1(vuz1240), new_abs0(vuz28))
new_gcd2(Zero, vuz126, Zero) → new_error
new_primQuotInt0(vuz122, Neg(Succ(vuz12300))) → Pos(new_primDivNatS1(vuz122, vuz12300))
new_gcd24(Zero, Succ(vuz280)) → new_gcd0Gcd'0(new_abs(Zero), new_abs0(Succ(vuz280)))
new_primDivNatS1(Succ(Zero), Succ(vuz123000)) → Zero
new_gcd0Gcd'0(vuz170, Pos(Zero)) → vuz170
new_primMinusNatS0(Succ(vuz1620), Succ(vuz1630)) → new_primMinusNatS0(vuz1620, vuz1630)
new_primModNatS1(Succ(Succ(vuz170000)), Zero) → new_primModNatS1(new_primMinusNatS0(Succ(vuz170000), Zero), Zero)

The set Q consists of the following terms:

new_primPlusNat1(Succ(x0), Zero)
new_primDivNatS1(Succ(Succ(x0)), Succ(x1))
new_primMulNat0(Succ(x0), Zero)
new_primDivNatS1(Succ(Zero), Succ(x0))
new_primPlusNat0(Zero, x0)
new_gcd24(Zero, Succ(x0))
new_primMinusNatS2
new_gcd21(Succ(x0), x1)
new_gcd22(Neg(x0), Neg(x1), x2)
new_gcd2(Succ(x0), x1, x2)
new_primModNatS1(Succ(Zero), Succ(x0))
new_primMulNat0(Zero, Zero)
new_primQuotInt(x0, Neg(Zero))
new_primMinusNatS0(Succ(x0), Zero)
new_primQuotInt0(x0, Pos(Zero))
new_absReal1(x0)
new_primDivNatS1(Succ(Succ(x0)), Zero)
new_primMinusNatS1(x0)
new_gcd22(Pos(x0), Pos(x1), x2)
new_primRemInt(Neg(x0), x1)
new_quot0(Pos(x0), Neg(x1), x2)
new_quot0(Neg(x0), Pos(x1), x2)
new_abs0(Succ(x0))
new_gcd23(Zero, Succ(x0))
new_gcd0Gcd'0(x0, Neg(Zero))
new_primPlusNat1(Zero, Succ(x0))
new_primQuotInt0(x0, Neg(Zero))
new_primMinusNatS0(Zero, Zero)
new_quot2(Neg(x0), Pos(x1), x2)
new_quot2(Pos(x0), Neg(x1), x2)
new_primModNatS1(Succ(Succ(x0)), Zero)
new_abs(Succ(x0))
new_gcd0Gcd'0(x0, Neg(Succ(x1)))
new_primModNatS02(x0, x1, Succ(x2), Succ(x3))
new_reduce2D2(x0, x1)
new_primModNatS1(Succ(Succ(x0)), Succ(x1))
new_primDivNatS1(Succ(Zero), Zero)
new_gcd21(Zero, Succ(x0))
new_primQuotInt(x0, Neg(Succ(x1)))
new_gcd21(Zero, Zero)
new_reduce2D0(x0, x1)
new_primPlusNat1(Zero, Zero)
new_error
new_primMinusNatS0(Zero, Succ(x0))
new_primModNatS02(x0, x1, Succ(x2), Zero)
new_quot(x0, x1, x2, x3)
new_primQuotInt0(x0, Pos(Succ(x1)))
new_quot0(Neg(x0), Neg(x1), x2)
new_gcd23(Succ(x0), x1)
new_gcd24(Zero, Zero)
new_quot2(Neg(x0), Neg(x1), x2)
new_primModNatS1(Succ(Zero), Zero)
new_gcd24(Succ(x0), x1)
new_primRemInt0(Neg(x0), x1)
new_primMinusNatS0(Succ(x0), Succ(x1))
new_primDivNatS02(x0, x1, Succ(x2), Succ(x3))
new_gcd2(Zero, x0, Zero)
new_primRemInt0(Pos(x0), x1)
new_primMulNat0(Zero, Succ(x0))
new_quot0(Pos(x0), Pos(x1), x2)
new_primQuotInt0(x0, Neg(Succ(x1)))
new_primDivNatS1(Zero, x0)
new_primPlusNat1(Succ(x0), Succ(x1))
new_primPlusNat0(Succ(x0), x1)
new_primQuotInt(x0, Pos(Succ(x1)))
new_gcd2(Zero, x0, Succ(x1))
new_primModNatS1(Zero, x0)
new_primDivNatS02(x0, x1, Zero, Succ(x2))
new_gcd20(Neg(x0), Neg(x1), x2)
new_primDivNatS02(x0, x1, Zero, Zero)
new_gcd0Gcd'0(x0, Pos(Succ(x1)))
new_gcd23(Zero, Zero)
new_gcd22(Neg(x0), Pos(x1), x2)
new_gcd22(Pos(x0), Neg(x1), x2)
new_primQuotInt(x0, Pos(Zero))
new_gcd0Gcd'0(x0, Pos(Zero))
new_primDivNatS02(x0, x1, Succ(x2), Zero)
new_reduce2D1(x0, x1)
new_primModNatS01(x0, x1)
new_primRemInt(Pos(x0), x1)
new_primDivNatS01(x0, x1)
new_quot2(Pos(x0), Pos(x1), x2)
new_gcd0(x0, x1)
new_primMulNat0(Succ(x0), Succ(x1))
new_reduce2D(x0, x1)
new_abs0(Zero)
new_primModNatS02(x0, x1, Zero, Succ(x2))
new_gcd20(Neg(x0), Pos(x1), x2)
new_gcd20(Pos(x0), Neg(x1), x2)
new_quot1(x0, x1, x2, x3)
new_abs(Zero)
new_primModNatS02(x0, x1, Zero, Zero)
new_gcd20(Pos(x0), Pos(x1), x2)

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:


Haskell To QDPs


↳ HASKELL
  ↳ IFR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ LetRed
                ↳ HASKELL
                  ↳ NumRed
                    ↳ HASKELL
                      ↳ Narrow
                      ↳ Narrow
QDP
                          ↳ PisEmptyProof

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.